翻訳と辞書
Words near each other
・ Nowgong (Lok Sabha constituency)
・ Nowgong, Chhatarpur
・ Nowhadan
・ Nowhalua
・ Nowhani Bazar
・ Nowhatta
・ Nowhere
・ Nowhere (album)
・ Nowhere (event)
・ Nowhere (film)
・ Nowhere (song)
・ Nowhere Bound
・ Nowhere Boy
・ Nowhere Boys
・ Nowhere but Up
Nowhere commutative semigroup
・ Nowhere continuous function
・ Nowhere dense set
・ Nowhere Else to Roam
・ Nowhere Fast
・ Nowhere Girl
・ Nowhere girls
・ Nowhere in Africa
・ Nowhere Left to Hide
・ Nowhere Left to Run
・ Nowhere Man
・ Nowhere Man (comics)
・ Nowhere Man (EP)
・ Nowhere Man (Hemon novel)
・ Nowhere Man (Law & Order)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nowhere commutative semigroup : ウィキペディア英語版
Nowhere commutative semigroup
In mathematics, a nowhere commutative semigroup is a semigroup ''S'' such that, for all ''a'' and ''b'' in ''S'', if ''ab'' = ''ba'' then ''a'' = ''b''.〔A H Clifford, G B Preston (1964). ''The Algebraic Theory of Semigroups Vol. I'' (Second Edition). American Mathematical Society (p.26). ISBN 978-0-8218-0272-4〕 A semigroup ''S'' is nowhere commutative if and only if any two elements of ''S'' are inverses of each other.〔
==Characterization of nowhere commutative semigroups==

Nowhere commutative semigroups can be characterized in several different ways. If ''S'' is a semigroup then the following statements are equivalent:
*''S'' is nowhere commutative.
*''S'' is a rectangular band (in the sense in which the term is used by Howie〔
〕).
*For all ''a'' and ''b'' in ''S'', ''aba'' = ''a''.
*For all ''a'', ''b'' and ''c'' in ''S'', ''a''2 = ''a'' and ''abc'' = ''ac''.
Even though, by definition, the rectangular bands are concrete semigroups, they have the defect that their definition is formulated not in terms of the basic binary operation in the semigroup. The approach via the definition of nowhere commutative semigroups rectifies the defect.〔
To see that a nowhere commutative semigroup is a rectangular band, let ''S'' be a nowhere commutative semigroup. Using the defining properties of a nowhere commutative semigroup, one can see that for every ''a'' in ''S'' the intersection of the Green classes ''R''''a'' and ''L''''a'' contains the unique element ''a''. Let ''S''/''L'' be the family of ''L''-classes in ''S'' and ''S''/''R'' be the family of ''R''-classes in ''S''. The mapping
:ψ : ''S '' → (''S''/''R'') × (''S''/''L'')
defined by
:''a''ψ = ( ''R''''a'', ''L''''a'' )
is a bijection. If the Cartesian product (''S''/''R'') × (''S''/''L'') is made into a semigroup by furnishing it with the rectangular band multiplication, the map ψ becomes an isomorphism. So ''S'' is isomorphic to a rectangular band.
Other claims of equivalences follow directly from the relevant definitions.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nowhere commutative semigroup」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.